

Skip to main content

Ben Nadel . com

Navigation

	

Home

	

Activity

	

Podcast

	

My Book

	

About Me

	

People

	

Contact

	

Light UI

Dark UI

Ben Nadel at cf.Objective() 2014 (Bloomington, MN) with:

Joel Hill
(@Jiggidyuo)

Matt Vickers
(@envex)

Shawn Grigson
(@shawngrig)

Jonathan Rowny
(@jrowny)

Jonathan Dowdle
(@jdowdle)

Christian Ready
(@christianready)

Oscar Arevalo
(@oarevalo)

Jeff McDowell
(@jeff_s_mcdowell)

Steve 'Cutter' Blades
(@cutterbl)

← Previous Photo

Next Photo →

Using CFDocument To Save InVision Prototypes As Interactive PDFs In Lucee CFML 5.3.4.80

By Ben Nadel on
June 30, 2020

Tags:
ColdFusion

As I talked about in my post yesterday regarding "Dark Matter Designers", I've been playing around with some more advanced ways to generate PDFs at InVision. One idea that I had recently was to try and save one of our interactive prototypes as an interactive PDF. Meaning, a PDF in which the embedded screens had "hotspots" that would actually link to other pages (ie, screens) within the PDF. To explore this idea, I hard-coded some JSON (JavaScript Object Notation) and spun-up a Docker instance using CommandBox, Lucee CFML 5.3.4.80, and the PDF Extension version 1.0.0.75-SNAPSHOT that uses the Flying Saucer PDF rendering engine.

To get started with this experiment, I downloaded some of my old test screens and then hard-coded a JSON payload that included the screens and their hotpots (JSON truncated for demo):

[
	{
		"id": 1,
		"name": "Step 1",
		"clientFilename": "step-1.png",
		"width": 600,
		"height": 531,
		"hotspots": [
			{
				"x": 370,
				"y": 89,
				"width": 33,
				"height": 30,
				"targetScreenID": 1
			},
			{
				"x": 406,
				"y": 89,
				"width": 33,
				"height": 30,
				"targetScreenID": 2
			},
			//
]
	},
	// ...
]

To keep things simple, all the IDs are static; and each hotspot is a simple "click" hotspot that just uses the static screen ID as its target. The dimensions and locations of the screens and hostpots are all using production pixel values.

Ok, so now the fun part - can we take the screen images and JSON data and turn them into an interactive PDF!

To do this, we have a few hurdles. First, the PDF uses inches as its unit of measurement; but, our screens and hotspots are all defined using pixels. To overcome this issue, I just used trial-and-error to figure out what mapping of pixels-to-inches lead to a good-enough looking PDF. I also built-in some wiggle room around the embedded screens (ie, made the PDF pages larger than they had to be) in order to allow for some fuzzy sizing.

The second hurdle was getting the anchor links to work. When I first started constructing the PDF, my initial instinct was to break each screen out into its own CFDocumentSection so that it would have natural line-breaks. As it turns out, however, anchor links do not work across sections. As such, I had to leave the entire document in one section and then manually insert page-breaks using CFDocumentItem[type="pagebreak"].

The third hurdle was general CSS support - I had to make choices in my document layout specifically because "better choices" didn't work in the PDF. For example, I have to center the screen on the page using a table tag since sizing and centering a div using margin:auto didn't seem to work.

With that said, here's the ColdFusion code that I came up with - I've broken the top-level CFDocument and its content out into two different files for easier reading. Here's the top-level page:

<cfscript>
	
	screens = deserializeJson(fileRead("./data.json"));

	// Since all pages in a generated PDF need to be the same size, we're going to use
	// the largest Width and Height values as the PDF page size. Then, each screen will
	// be centered within the page.
	maxImageWidth = getMaxValue(screens, "width");
	maxImageHeight = getMaxValue(screens, "height");

	// The page dimensions have to be calculated in Inches; but, our image and hotspots
	// are all sized using Pixels. As such, we have to ROUGHLY TRANSLATE pixels-to-inches
	// using a good-enough approximation. Then, we'll leave in some wiggle-room and just
	// center the images so as to keep them in a consistent place.
	wiggleRoom = 25;
	pageMargin = 0.5;
	// NOTE: The PDF uses a "content-box" model. As such, we have to build the margin
	// value into the dimensions of the page.
	pageWidth = (px2in(maxImageWidth + wiggleRoom) + pageMargin + pageMargin);
	pageHeight = (px2in(maxImageHeight + wiggleRoom) + pageMargin + pageMargin);

	// Generate the PDF document using one screen per PDF page.
	// --
	// NOTE: We're leaving the BOTTOM MARGIN of each page 0 - again, this gives us some
	// wiggle-room in terms of translating pixels-to-inches. If the heights of the
	// screens aren't exactly correct, having no margin gives us some bleeding-room.
	document
		format = "pdf"
		filename = "./pages.pdf"
		overwrite = true
		localUrl = true
		pageType = "custom"
		pageWidth = pageWidth
		pageHeight = pageHeight
		unit = "in"
		marginTop = 0
		marginRight = pageMargin
		marginBottom = 0
		marginLeft = pageMargin
		bookmark = true
		htmlbookmark = true
		{

		include template = "./content.cfm";

	}
	
	// --- //
	// --- //

	/**
	* I get the max value out of the collection (using the given property).
	*
	* @collection I am the collection being inspected.
	* @key I am the key whose value is being plucked.
	*/
	public numeric function getMaxValue(
		required array collection,
		required string key
) {

		var maxValue = collection
			.map(
				(item) => {

					return(item[key]);
				}
)
			.max()
		;

		return(maxValue);

	}

	/**
	* I roughly translate Pixels to Inches for PDF generation.
	*
	* @pixelValue I am the value being converted.
	*/
	public numeric function px2in(required numeric pixelValue) {

		// This conversion value is based on trial-and-error and seems to generate a
		// good-enough rendering.
		return(pixelValue / 96);

	}

</cfscript>

As you can see, the top-level page reads in the screens and calculates the size of the generated PDF, converting pixels to inches and building-in some wiggle-room in terms of page-dimensions. Notice that I've included the Lucee-CFML-Only attribute, htmlbookmark. This allows us to turns H1-6 tags into bookmarks in the generated PDF.

And now, the actual HTML / CFML content in the PDF. In this code, each page has a position: relative wrapper (td element). The hotspots are then anchor tags (a) that use position: absolute such that they can be stacked over the embedded screen image.

<!doctype html>
<html lang="en">
<head>
	<meta charset="utf-8" />
	<style type="text/css">

		html,
		body {
			margin: 0 ;
		}

		h2 {
			color: #ffffff ;
			font-size: 0px ;
			height: 1px ;
			line-height: 0px ;
		}

		td.screen {
			position: relative ;
			border: 2px solid #f0f0f0 ;
		}

		td.screen img {
			display: block ;
		}

		td.screen a.hotspot {
			border: 1px dashed blue ;
			border-radius: 8px 8px 8px 8px ;
			position: absolute ;
			text-decoration: none ;
		}

		td.blank-note {
			color: #999999 ;
			font-size: 16px ;
			font-family: monospace ;
			font-weight: bold ;
			text-transform: uppercase ;
		}

	</style>
</head>
<body>
	<cfoutput>

		<cfloop index="screen" array="#screens#">

			<!--
				Each hotspot will link to an anchor within the PDF. In order for anchor
				tags to work, we must use a SINGLE BODY. If we attempted to break this
				content up using CFDocumentSection, then our anchor links would break.
			-->
			

			<!--
				Using the H2 tags to generate HTML Bookmarks.
				--
				NOTE: Also using the H2 tag to implement the TOP MARGIN of the page. This
				is important because we want the A[NAME] anchor to be ABOVE the margin
				otherwise the link goes too far down on the target page.
			-->
			<h2 style="margin-bottom: #pageMargin#in ;">
				#encodeForHtml(screen.name)#
			</h2>

			<!-- Using table to center the page content. -->
			<table width="100%" cellspace="0" cellpadding="0" border="0">
			<tr>
				<td>
</td>
				<td class="screen" style="width: #screen.width#px ;">

					<img
						src="file:///#expandPath('./images/#screen.clientFilename#')#"
						width="#screen.width#"
						height="#screen.height#"
					/>

					<cfloop index="hotspot" array="#screen.hotspots#">

						<a
							href="##screen#hotspot.targetScreenID#"
							class="hotspot"
							style="width: #hotspot.width#px ; height: #hotspot.height#px ; left: #hotspot.x#px ; top: #hotspot.y#px ;">
							

						

					</cfloop>

				</td>
				<td>
</td>
			</tr>
			</table>

			<cfdocumentitem type="pagebreak" />

		</cfloop>

		<!--
			Since we have a page break after each screen, we are going to be left with a
			blank page at the end. Let us add a note so that this does not look like a
			mistake.
		-->
		<table width="100%" border="0" style="height: #maxImageHeight#px ;">
		<tr>
			<td align="center" valign="center" class="blank-note">

				Page Intentionally Left Blank

			</td>
		</tr>
		</table>

	</cfoutput>
</body>
</html>

Now, when we run this Lucee CFML code and open up the generated PDF, we get the following experience:

Yooooooo! That's kind of awesome! Obviously, the type of interactions in a PDF are going to be extremely limited - basically, we only have "click" (anchor tags) actions. But, encoding those relationships into an interactive PDF - that's kind of player! Just another reason that Lucee CFML is so much fun to work with!

Want to use code from this post?
Check out the license.

Short URL for Sharing:

https://bennadel.com/go/3856

You Might Also Enjoy Some of My Other Posts

	
Creating Page-Breaks In CFDocument Without Using CFDocumentItem In Lucee CFML 5.3.7.47

	
Using Both SrcFile And CFDocumentItem In The Same CFDocument Tag In Lucee CFML 5.3.7.47

	
Generating An Interactive Craft Sketch File From An InVision Prototype In Lucee CFML 5.3.6.61

	
Using Apache POI 3.17 To Save InVision Prototypes As Interactive PowerPoints In Lucee CFML 5.3.6.61

	
Testing wkhtmltopdf 0.12.6 With Docker In Lucee CFML 5.3.4.80

	
CFDocument Intelligently Reuses Repeated Image Objects In Lucee CFML 5.3.4.80

	
Are There "Dark Matter" Designers?

	
Using CFDocument And CFPDF To Generate PDFs With Different-Sized Pages In Lucee CFML 5.3.6.61

	
Ask Ben: Creating A PDF And Attaching It To An Email Using ColdFusion

Show all related posts

Reader Comments

Chris G

Jul 1, 2020 at 1:12 PM

197 Comments

I have just one thing to say to this - 😱 WHOA 😱!

Ben Nadel

Jul 1, 2020 at 1:30 PM

15,617 Comments

@Chris,

Ha ha ha, thanks :D I'm gonna see if I can flesh this out into something more scalable with a larger prototype. Will be interesting to see what the user-experience is like.

Joseph Mukiibi

Aug 18, 2020 at 5:15 AM

1 Comments

Good Work and Thank you for the experience sharing.

Oh my chickens, this post is old!

Hit me up on Twitter if you want to discuss it further.

I believe in love. I believe in compassion. I believe in human rights. I believe that we can afford to give more of these gifts to the world around us because it costs us nothing to be decent and kind and understanding. And, I want you to know that when you land on this site, you are accepted for who you are, no matter how you identify, what truths you live, or whatever kind of goofy shit makes you feel alive! Rock on with your bad self!

—
Ben Nadel

Ben Nadel © 2024.
All content is the property of Ben Nadel.
For use of code see license.

Back to Top

About Ben Nadel

I am the co-founder and a principal engineer at InVision App, Inc — the world's leading online whiteboard and productivity platform powering the future of work. I also rock out in JavaScript and ColdFusion 24x7 and I dream about chained Promises resolving asynchronously.

Social Links

	

GitHub

	

Twitter

	

LinkedIn

	

Facebook

Site Links

	

Home

	

Activity

	

Podcast

	

Projects

	

About Me

	

Contact Me

	

People

	

InVision

	

RSS Feed

My Other Projects

	

Big Sexy Poems

	

Dig Deep Fitness

	

Incident Commander

	

Feature Flags (Book)

